人工智能 (AI) 是一个术语,用于描述计算机科学的一个分支,该分支致力于创建能够像人类一样学习工作和反应的智能机器。 人工智能领域不仅限于创建高水平的机器学习,而且还以产生所需结果所需的方式利用数据输入。 人工智能具有多种类型和特点。 其中一些类型如下所述。
- 反应智能 – 顾名思义,反应智能是一种仅对特定输入做出反应的人工智能。 反应式 AI 无法形成记忆或使用过去的经验来做出决定。 换言之,他们无法进行传统意义上的学习。 取而代之的是,人工智能被编程并会根据一组预定义的参数做出反应。 最著名的例子之一是 IBM 的深蓝 1997 年能够击败加里卡斯帕罗夫的国际象棋计算机。
- 有限的记忆智能 – 这种类型的人工智能是对反应式人工智能的改进,因为它能够使用记忆来研究过去的数据,然后根据这些选择做出决定。 这种形式的 AI 通常使用的内存类型是短期或临时内存。 有限内存人工智能的最著名例子之一是自动驾驶汽车。 内置于汽车中的人工智能可以使用传感器,然后调用其先前的记忆来识别行人或交通信号。 通过这种方式,它能够快速做出决策,从而减少事故的发生。 需要补充的重要一点是,以有限内存原理运行的机器具有一组预编程的值,并且无法更改这些主要参数。 他们可以通过修改原来的程序来适应新的变化,但他们不能在没有帮助的情况下改变自己的行为。
- 心智理论 – 在我们目前看到的例子中,我们已经确定了在一定程度上具有智能的机器,但不能真正从它们定义的一组值或库中获得很多。 心理理论 AI 的不同之处在于它们将能够社交和理解人类情感。 换句话说,他们将能够更好地理解人类行为,并像任何其他人一样与我们互动,而不是作为传统的学习机器。 心理理论 AI 计算机目前正在由世界各地的多家公司开发,但尚未建成。 这类 AI 的主要争论点是,为了让它们真正具有自我意识,它们必须了解情绪,能够改变并适应人类行为和互动。
- 自我意识人工智能 – 有自我意识的人工智能机器是大多数人在考虑电影中看到的人工智能时的想象。 建立在自我意识原则上的机器将是超级智能、有知觉的并具有一定程度的意识。 自我意识人工智能概念代表了人工智能的圣杯,我们尚未达到使机器真正具有自我意识所需的技术水平。
此外,随着我们继续争论是什么使人机交互在行动或影响中真正互惠,自我意识 AI 也提出了道德和哲学挑战。
从技术的角度来看,我们尚未确定如何复制和整合人脑中的神经模式,使我们能够在整合情绪的同时思考和分析想法。 真正具有自我意识的智能产生的另一个问题很简单:“它会有什么好处吗?” 从相对道德的意义上来说,这并不好,但在其目的上确实有益。 这让人质疑作为人类意味着什么,并且因为我们会犯错误,这些错误是否会蔓延到决策过程中。 许多人认为人类犯错的简单原因是基于他们处理情绪的能力,因此,人类设计的机器,无论多么聪明,都有可能因为其基于人的程序化情绪而容易出现问题。偏见。 以我们目前的技术水平,自我意识机器在这一点上仍然只是一个概念,但看看未来会发生什么将会很有趣。
实现人工智能
那么,既然我们了解了我们想要构建什么类型的机器智能或半智能机器,我们下一步会做什么? 机器将如何学习?
教授机器智能的主要方法,或者换句话说,教机器如何收集和处理信息是一个被称为机器学习的概念。 机器学习是通过使用复杂的算法来实现的,这些算法可以发现模式并从它们所接触的数据中产生洞察力。 机器学习的一个重要子类别称为深度学习。 深度学习是一种为机器创建模拟人工学习能力的方法,它允许机器使用人工神经网络模拟人脑,在大量传入数据的混乱中理解模式、噪声和其他输入源.
深度学习实际上是如何工作的?
输入层
深度学习的最基本模型通过创建多层输入来模仿神经网络。 第一层将被称为 输入层 它将用于将加权值输入机器。
隐藏层
下一个叫做 隐藏层。 该层将负责基于位于输入层和输出层之间的人工输入的数学计算或特征提取。 随着越来越多的隐藏层被添加,该区域内可能会发生对深度复杂数据的额外处理。 解释这一点的最简单方法是,在隐藏层中,值由人工输入(我们的数据)分配,然后机器将开始将我们设置的值与我们提供的数据连接起来。 例如,假设我们在隐藏层中有一组狗图片。 我们可以添加面包、颜色、大小等值,机器将使用输入数据分配这些值。 我们拥有的隐藏层越多,预测的输出就越准确。 这个过程可以通过称为反向传播的过程进行更精细的调整。
输出层
这 输出层 是最后一层,它将为我们提供隐藏层给出的结果。